

SCA610 Series

Accelerometer/Inclinometer

FEATURES

- Available ranges $\pm 0.5g (\pm 30^{\circ})$, $\pm 1g (\pm 90^{\circ})$, ± 1.5 g, ± 1.7 g,
- 8-pin plastic surface mount DIP package mountable with pick and place machines
- · Enhanced failure detection
- Digitally activated electrostatic self test (not for inclinometers)
- · Calibration memory parity check
- · Continuous connection failure detection
- · Bi-directional acceleration measurement
- Controlled frequency response in the sensing
- Re-flow solderable, process compatible
 Single +5V supply; ratiometric voltage output in the range 4.75 ... 5.25V

- Exceptional reliability, unprecedented accuracy and excellent stability over temperature and time
- Outstanding overload and shock durability
- · No additional components required

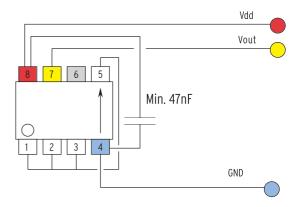
APPLICATIONS

- · Acceleration measurement
- · Inclination measurement
- · Motion measurement
- · Vibration measurement

For customised product please contact **VTI Technologies**

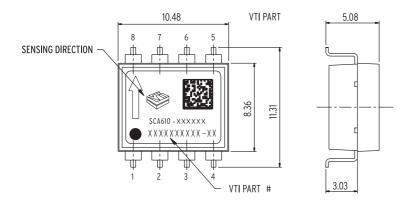
Parameter	Condition	Min.	Typ.	Max.	Units
Supply voltage Vdd		4.75		5.25	٧
Current consumption	Vdd = 5V; No load		2.0	4.0	mA
Operating temperature		- 40		+ 125	°C
Resistive output load	Vout to Vdd or Vss	20			k0hm
Capacitive load	Vout to Vdd or Vss			20	nF
Output noise ⁽¹	DC80kHz		0.25		mg

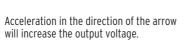
Parameter	Condition/ Comment	SCA610- CBHH1G ⁽¹³	SCA610- CB1H1G ⁽¹³	SCA610- C23H1A	SCA610- C28H1A	Units
Measuring range ⁽²	Nominal	±0.5 (±30°)	±1 (±90°)	±1.5	±1.7	g
Mounting plane ⁽³	Measuring Direction	Horizontal	Horizontal	Horizontal	Horizontal	
Zero point (nom.) ⁽⁴	Mounting position	Vdd/2	Vdd/2	Vdd/2	Vdd/2	٧
Sensitivity	@ room temperature	4 ^{(5b}	2 ^{(5a}	1.333 ^{(5a}	1.2 ^{(5a}	V/g
Zero point error ⁽⁶	-40125°C	±60	±60	±125	±125	mg
Zero point tempco (7	-2585°C	0.15 ± 0.35	0.15 ± 0.35	0.3 ± 0.6	0.3 ± 0.6	mg/°C
Sensitivity error	-40125°C	±4 ^(8b)	±4 ^{(8a}	±4 ^{(8a}	±4 ^{(8a}	%
Sensitivity error ⁽⁷	-2585°C	±2.5 ^(8b)	±2.5 ^(8b)	±3 ^(8b)	±3 ^(8b)	%
Typical non-linearity ⁽⁷	Over measuring range	±10 ^{(9b, c}	±20 ^{(9a, c}	$\pm 30^{(9a)}$	$\pm 40^{(9a}$	mg
Cross-axis sensitivity (10		5	5	5	5	%
Frequency response	-3dB point (11	6±4	6±4	50±30	50±30	Hz
Ratiometric error (12	Vdd = 4.755.25V	2	2	2	2	%

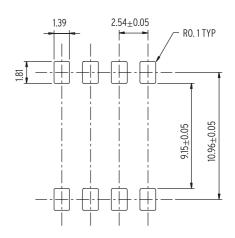

Note 1	The noise density of CBHH1G and CB1H1G is 30 $\mu g/VHz$, the noise density of C23H1G	Note 9a	Relative to straight line between $\pm 1g$.
	and C28H1G is 20 μg/√Hz.	Note 9b	Relative to straight line between ±0.5g.
Note 2	The measuring range is limited by sensitivity, offset and supply voltage rails	Note 9b	In inclinometer applications a correction based on the angular error resulting from
	of the device.		cross-axis sensitivity around the inclination angle reduces non-linearity.
Note 3	Measuring direction parallel to the mounting plane.	Note 10	The cross-axis sensitivity determines how much acceleration, perpendicular
Note 4	Vertical versions in +1g position, i.e. arrow up: horizontal versions pins down (+0g)		to the measuring axis, couples to the output. The total cross-axis sensitivity is
Note 5a	Sensitivity specified as [Vout (+1g) - Vout(-1g)] / 2 [V/g] .		the geometric sum of the sensitivities of the two axes, which are perpendicular
Note 5b	Sensitivity specified as [Vout (+0.5g) - Vout(-0.5g)][V/g] .		to the measuring axis.
Note 6	Zero point error specified as (Vout (+0g) - Vdd/2) / Vsens [g] (room temp.	Note 11	The output has true DC (OHz) response.
	error included); Vsens = Nominal sensitivity.	Note 12	Supply voltage noise also couples to the output, due to the ratiometric
Note 7	Typical tolerance, not 100 % tested.		(output proportional to supply voltage) nature of the accelerometer.
Note 8a	Sensitivity error specified as {{[Vout (+1g) -Vout (-1g)] / 2} -Vsens} / Vsens x 100% [%]	Note 13	Self test not recommended.
	(room temp. error included); Vsens = Nominal sensitivity.		RE = 100% x $1 - \frac{Vout(@Vx) \times \frac{5.00V}{Vx}}{Vx}$
Note 8b	Sensitivity error specified as {{[[Vout (+0.5g) -Vout (-0.5g)] / 2} -Vsens} / Vsens x 100%		$RE = 100\% \times 1 - \frac{Vx}{1 $
	[%] (room temp. error included); Vsens = Nominal sensitivity.	The ratio	metric error is specified as: Vout(@5V)

ABSOLUTE MAXIMUM RATINGS			
Parameter	Value	Units	
Acceleration (powered or non-powered)	20000	g	
Supply voltage	-0.3 to +7.0	V	
Voltage at input / output pins	-0.3 to Vdd + 0.3	V	
Temperature range	-55 to +125	oC	

ELECTRICAL CONNECTION


Pin#	Pin Name	Connection
1		Open or capacitively connected to GND for EMC
2		Open or capacitively connected to GND for EMC
3		Open or capacitively connected to GND for EMC
4		Negative supply voltage (VSS)
5		Open or capacitively connected to GND for EMC
6	ST	Self-test control
7	VOUT	Sensor analog output
8	VDD	Positive supply voltage (VDD)


RECOMMENDED CIRCUIT



DIMENSIONS PCB PAD LAYOUTS

The accelerometer weighs under 1g. The size of the part is approximately (w x h x l) 9 x 5 x 11 mm. Pin pitch is standard 100 mils.

