/***************************************************************************** * * cc3000_common.h - CC3000 Host Driver Implementation. * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/ * * Adapted for use with the Arduino/AVR by KTOWN (Kevin Townsend) * & Limor Fried for Adafruit Industries * This library works with the Adafruit CC3000 breakout * ----> https://www.adafruit.com/products/1469 * Adafruit invests time and resources providing this open source code, * please support Adafruit and open-source hardware by purchasing * products from Adafruit! * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. * * Neither the name of Texas Instruments Incorporated nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *****************************************************************************/ #ifndef __COMMON_H__ #define __COMMON_H__ //****************************************************************************** // Include files //****************************************************************************** #include #include #include //***************************************************************************** // // If building with a C++ compiler, make all of the definitions in this header // have a C binding. // //***************************************************************************** #ifdef __cplusplus extern "C" { #endif //***************************************************************************** // ERROR CODES //***************************************************************************** #define ESUCCESS 0 #define EFAIL -1 #define EERROR EFAIL //***************************************************************************** // COMMON DEFINES //***************************************************************************** #define ERROR_SOCKET_INACTIVE -57 #define WLAN_ENABLE (1) #define WLAN_DISABLE (0) #define MAC_ADDR_LEN (6) #define SP_PORTION_SIZE (32) // #define CC3000_TINY_DRIVER /*Defines for minimal and maximal RX buffer size. This size includes the spi header and hci header. The maximal buffer size derives from: MTU + HCI header + SPI header + sendto() agrs size The minimum buffer size derives from: HCI header + SPI header + max args size This buffer is used for receiving events and data. The packet can not be longer than MTU size and CC3000 does not support fragmentation. Note that the same buffer is used for reception of the data and events from CC3000. That is why the minimum is defined. The calculation for the actual size of buffer for reception is: Given the maximal data size MAX_DATA that is expected to be received by application, the required buffer is: Using recv() or recvfrom(): max(CC3000_MINIMAL_RX_SIZE, MAX_DATA + HEADERS_SIZE_DATA + fromlen + ucArgsize + 1) Using gethostbyname() with minimal buffer size will limit the host name returned to 99 bytes only. The 1 is used for the overrun detection Buffer size increased to 130 following the add_profile() with WEP security which requires TX buffer size of 130 bytes: HEADERS_SIZE_EVNT + WLAN_ADD_PROFILE_WEP_PARAM_LEN + MAX SSID LEN + 4 * MAX KEY LEN = 130 MAX SSID LEN = 32 MAX SSID LEN = 13 (with add_profile only ascii key setting is supported, therfore maximum key size is 13) */ #define CC3000_MINIMAL_RX_SIZE (130 + 1) #define CC3000_MAXIMAL_RX_SIZE (1519 + 1) /*Defines for minimal and maximal TX buffer size. This buffer is used for sending events and data. The packet can not be longer than MTU size and CC3000 does not support fragmentation. Note that the same buffer is used for transmission of the data and commands. That is why the minimum is defined. The calculation for the actual size of buffer for transmission is: Given the maximal data size MAX_DATA, the required buffer is: Using Sendto(): max(CC3000_MINIMAL_TX_SIZE, MAX_DATA + SPI_HEADER_SIZE + SOCKET_SENDTO_PARAMS_LEN + SIMPLE_LINK_HCI_DATA_HEADER_SIZE + 1) Using Send(): max(CC3000_MINIMAL_TX_SIZE, MAX_DATA + SPI_HEADER_SIZE + HCI_CMND_SEND_ARG_LENGTH + SIMPLE_LINK_HCI_DATA_HEADER_SIZE + 1) The 1 is used for the overrun detection */ #define CC3000_MINIMAL_TX_SIZE (130 + 1) #define CC3000_MAXIMAL_TX_SIZE (1519 + 1) //TX and RX buffer sizes, allow to receive and transmit maximum data at length 8. #ifdef CC3000_TINY_DRIVER #define TINY_CC3000_MAXIMAL_RX_SIZE 44 #define TINY_CC3000_MAXIMAL_TX_SIZE 59 #endif /*In order to determine your preferred buffer size, change CC3000_MAXIMAL_RX_SIZE and CC3000_MAXIMAL_TX_SIZE to a value between the minimal and maximal specified above. Note that the buffers are allocated by SPI. In case you change the size of those buffers, you might need also to change the linker file, since for example on MSP430 FRAM devices the buffers are allocated in the FRAM section that is allocated manually and not by IDE. */ #ifndef CC3000_TINY_DRIVER #define CC3000_RX_BUFFER_SIZE (CC3000_MINIMAL_RX_SIZE) #define CC3000_TX_BUFFER_SIZE (CC3000_MINIMAL_TX_SIZE) //if defined TINY DRIVER we use smaller RX and TX buffer in order to minimize RAM consumption #else #define CC3000_RX_BUFFER_SIZE (TINY_CC3000_MAXIMAL_RX_SIZE) #define CC3000_TX_BUFFER_SIZE (TINY_CC3000_MAXIMAL_TX_SIZE) #endif //***************************************************************************** // Compound Types //***************************************************************************** #ifdef __AVR__ typedef unsigned long time_t; /* KTown: Updated to be compatible with Arduino Time.h */ #else typedef long time_t; #endif typedef unsigned long clock_t; typedef long suseconds_t; typedef struct timeval timeval; struct timeval { time_t tv_sec; /* seconds */ suseconds_t tv_usec; /* microseconds */ }; typedef char *(*tFWPatches)(unsigned long *usLength); typedef char *(*tDriverPatches)(unsigned long *usLength); typedef char *(*tBootLoaderPatches)(unsigned long *usLength); typedef void (*tWlanCB)(long event_type, char * data, unsigned char length ); typedef long (*tWlanReadInteruptPin)(void); typedef void (*tWlanInterruptEnable)(void); typedef void (*tWlanInterruptDisable)(void); typedef void (*tWriteWlanPin)(unsigned char val); typedef struct { unsigned short usRxEventOpcode; unsigned short usEventOrDataReceived; unsigned char *pucReceivedData; unsigned char *pucTxCommandBuffer; tFWPatches sFWPatches; tDriverPatches sDriverPatches; tBootLoaderPatches sBootLoaderPatches; tWlanCB sWlanCB; tWlanReadInteruptPin ReadWlanInterruptPin; tWlanInterruptEnable WlanInterruptEnable; tWlanInterruptDisable WlanInterruptDisable; tWriteWlanPin WriteWlanPin; signed long slTransmitDataError; unsigned short usNumberOfFreeBuffers; unsigned short usSlBufferLength; unsigned short usBufferSize; unsigned short usRxDataPending; unsigned long NumberOfSentPackets; unsigned long NumberOfReleasedPackets; unsigned char InformHostOnTxComplete; }sSimplLinkInformation; extern volatile sSimplLinkInformation tSLInformation; //***************************************************************************** // Prototypes for the APIs. //***************************************************************************** //***************************************************************************** // //! SimpleLinkWaitEvent //! //! @param usOpcode command operation code //! @param pRetParams command return parameters //! //! @return none //! //! @brief Wait for event, pass it to the hci_event_handler and //! update the event opcode in a global variable. // //***************************************************************************** extern void SimpleLinkWaitEvent(unsigned short usOpcode, void *pRetParams); //***************************************************************************** // //! SimpleLinkWaitData //! //! @param pBuf data buffer //! @param from from information //! @param fromlen from information length //! //! @return none //! //! @brief Wait for data, pass it to the hci_event_handler //! and update in a global variable that there is //! data to read. // //***************************************************************************** extern void SimpleLinkWaitData(uint8_t *pBuf, uint8_t *from, uint8_t *fromlen); //***************************************************************************** // //! UINT32_TO_STREAM_f //! //! \param p pointer to the new stream //! \param u32 pointer to the 32 bit //! //! \return pointer to the new stream //! //! \brief This function is used for copying 32 bit to stream //! while converting to little endian format. // //***************************************************************************** extern uint8_t* UINT32_TO_STREAM_f (uint8_t *p, uint32_t u32); //***************************************************************************** // //! UINT16_TO_STREAM_f //! //! \param p pointer to the new stream //! \param u32 pointer to the 16 bit //! //! \return pointer to the new stream //! //! \brief This function is used for copying 16 bit to stream //! while converting to little endian format. // //***************************************************************************** extern uint8_t* UINT16_TO_STREAM_f (uint8_t *p, uint16_t u16); //***************************************************************************** // //! STREAM_TO_UINT16_f //! //! \param p pointer to the stream //! \param offset offset in the stream //! //! \return pointer to the new 16 bit //! //! \brief This function is used for copying received stream to //! 16 bit in little endian format. // //***************************************************************************** extern uint16_t STREAM_TO_UINT16_f(char* p, uint16_t offset); //***************************************************************************** // //! STREAM_TO_UINT32_f //! //! \param p pointer to the stream //! \param offset offset in the stream //! //! \return pointer to the new 32 bit //! //! \brief This function is used for copying received stream to //! 32 bit in little endian format. // //***************************************************************************** extern uint32_t STREAM_TO_UINT32_f(char* p, uint16_t offset); //***************************************************************************** // //! cc3k_int_poll //! //! \brief checks if the interrupt pin is low //! just in case the hardware missed a falling edge //! function is in ccspi.cpp // //***************************************************************************** extern void cc3k_int_poll(); //***************************************************************************** // COMMON MACROs //***************************************************************************** //This macro is used for copying 8 bit to stream while converting to little endian format. #define UINT8_TO_STREAM(_p, _val) {*(_p)++ = (_val);} //This macro is used for copying 16 bit to stream while converting to little endian format. #define UINT16_TO_STREAM(_p, _u16) (UINT16_TO_STREAM_f(_p, _u16)) //This macro is used for copying 32 bit to stream while converting to little endian format. #define UINT32_TO_STREAM(_p, _u32) (UINT32_TO_STREAM_f(_p, _u32)) //This macro is used for copying a specified value length bits (l) to stream while converting to little endian format. #define ARRAY_TO_STREAM(p, a, l) {register short _i; for (_i = 0; _i < l; _i++) *(p)++ = ((uint8_t *) a)[_i];} //This macro is used for copying received stream to 8 bit in little endian format. #define STREAM_TO_UINT8(_p, _offset, _u8) {_u8 = (uint8_t)(*(_p + _offset));} //This macro is used for copying received stream to 16 bit in little endian format. #define STREAM_TO_UINT16(_p, _offset, _u16) {_u16 = STREAM_TO_UINT16_f(_p, _offset);} //This macro is used for copying received stream to 32 bit in little endian format. #define STREAM_TO_UINT32(_p, _offset, _u32) {_u32 = STREAM_TO_UINT32_f(_p, _offset);} #define STREAM_TO_STREAM(p, a, l) {register short _i; for (_i = 0; _i < l; _i++) *(a)++= ((uint8_t *) p)[_i];} //***************************************************************************** // // Mark the end of the C bindings section for C++ compilers. // //***************************************************************************** #ifdef __cplusplus } #endif // __cplusplus #endif // __COMMON_H__